Những câu hỏi liên quan
Hiếu Trần
Xem chi tiết
tth_new
4 tháng 8 2018 lúc 8:16

Ghi chú: Này, mình mới lớp 6, nên giải chưa biết chắc là đúng hay sai nên lỡ có sai thì bạn đừng trách mình nhé!

Đặt \(A=\frac{x}{y\left(z+1\right)}+\frac{y}{z\left(x+1\right)}+\frac{z}{x\left(y+1\right)}\le\frac{9}{4}\)(Sửa đề)

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)với a,b dương và x + y + z = 1,ta có:

\(\frac{4}{y\left(z+1\right)}=\frac{4}{y\left(z+x+y+z\right)}=\frac{4}{y\left(\left(z+x\right)+\left(z+y\right)\right)}\le\frac{4}{y}\left(\frac{1}{z+x}+\frac{1}{z+y}\right)\)

Nhân hai vế với số dương xy, ta được:

\(\frac{4xy}{y\left(z+1\right)}\le\frac{4xy}{y}\left(\frac{1}{z+x}+\frac{1}{z+y}\right)\). Do đó:

\(4A=\frac{4xy}{y\left(z+1\right)}+\frac{4yz}{z\left(x+1\right)}+\frac{4zx}{x\left(y+1\right)}\)

\(\le\frac{4xy}{y}\left(\frac{1}{z+x}+\frac{1}{z+y}\right)+\frac{4yz}{z}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{4zx}{x}\left(\frac{1}{y+z}+\frac{1}{y+z}\right)\)

\(=4x\left(\frac{1}{z+x}+\frac{1}{z+y}\right)+4y\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+4z\left(\frac{1}{y+z}+\frac{1}{y+z}\right)\)

\(=\frac{4x}{z+x}+\frac{4x}{z+y}+\frac{4y}{x+y}+\frac{4y}{x+z}+\frac{4z}{y+z}+\frac{4z}{y+z}\)

\(\Rightarrow4A\le\frac{4x+4y}{z+x}+\frac{4y+4z}{z+y}+\frac{4z+4x}{x+y}=x+y+z=9\)

Do : \(4A\le9\)nên \(A< \frac{9}{4}\)

Bình luận (0)
doraemon
Xem chi tiết
alibaba nguyễn
28 tháng 12 2021 lúc 19:57

\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\le\frac{1}{4x}+\frac{1}{4y}+\frac{1}{4z}+\frac{9}{4}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\le\left(x+y+z\right)\left(\frac{1}{4x}+\frac{1}{4y}+\frac{1}{4z}\right)+\frac{9}{4}\)

\(\Leftrightarrow\frac{z}{x+y}+\frac{x}{y+z}+\frac{y}{z+x}\le\frac{y+z}{4x}+\frac{z+x}{4y}+\frac{x+y}{4z}\)

Ta có:

\(VP=\frac{1}{4}\left(\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}\right)\)

\(\ge\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=VT\)

Bình luận (0)
 Khách vãng lai đã xóa
doraemon
Xem chi tiết
Ai Ai Ai
Xem chi tiết
Lương Ngọc Anh
2 tháng 5 2016 lúc 21:26

ta có \(\frac{1}{x^2+x}+\frac{x^2+x}{4}>=2\cdot\sqrt{\frac{1\cdot\left(x^2+x\right)}{\left(x^2+x\right)\cdot4}}=1\)

tương tự => \(\frac{1}{y^2+y}+\frac{y^2+y}{4}>=1;\frac{1}{z^2+z}+\frac{z^2+z}{4}>=1\)

=> VT >= 3-(\(\frac{x^2+x}{4}+\frac{y^2+y}{4}+\frac{z^2+z}{4}\))=3-\(\frac{x^2+y^2+z^2+3}{4}\)

mà \(\frac{x^2}{4}+\frac{y^2}{4}+\frac{z^2}{4}>=\frac{\left(x+y+z\right)^2}{4+4+4}=\frac{3}{4}\)

=> P>= 3-3/4-3/4=3/2

Dấu bằng khi x=y=z=1

Bình luận (0)
Vô Danh
3 tháng 5 2016 lúc 10:38

Bài bạn Lương Ngọc Anh bị ngược dấu nên sai hoàn toàn. Lời giải:

Ta có:

\(\frac{1}{x^2+x}=\frac{1}{x\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)

Tương tự, ta được:

\(VT=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Áp dụng BĐT Schwarz:

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\le\frac{1}{4}\left(3+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3}{4}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Do đó:

\(VT\ge\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\frac{3}{4}\left(1\right)\)

Mặt khác:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=3\left(2\right)\)

TỪ (1) VÀ (2) TA CÓ ĐIỀU PHẢI CHỨNG MINH.

Bình luận (0)
Xem chi tiết
tth_new
11 tháng 2 2020 lúc 19:21

Cho a, b, c mà bắt chứng minh x, y, z nên ko chứng minh đc là đúng òi:)

\(VT-VP=\Sigma_{cyc}\frac{\left(x-y\right)^4}{4xy\left(x^2+y^2\right)}\ge0\)

Bình luận (0)
 Khách vãng lai đã xóa
ღ๖ۣۜLinh
11 tháng 2 2020 lúc 19:26

a,b,c??? chỗ nào vậy bé ?? :)))

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
11 tháng 2 2020 lúc 19:27

Cho các số thực dương a,b,c thỏa mãn x+y+z=1 .Chứng minh

Chỗ e in đậm.

Bình luận (0)
 Khách vãng lai đã xóa
trần xuân quyến
Xem chi tiết
hoang thao my
9 tháng 6 2018 lúc 9:48

tau không biết nhà xin lỗi 

Bình luận (0)
Hiếu Trần
Xem chi tiết
Kiệt Nguyễn
14 tháng 4 2020 lúc 17:35

Bất đẳng thức bị ngược dấu rồi!

Ta có: \(x+yz=x\left(x+y+z\right)+yz=\left(x+y\right)\left(z+x\right)\)

Tương tự ta có: \(y+zx=\left(x+y\right)\left(y+z\right);z+xy=\left(y+z\right)\left(z+x\right)\)

Áp dụng BĐT Côsi cho hai số dương ta có:

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=8xyz\)

\(\Rightarrow\text{Σ}_{cyc}\frac{x}{x+yz}=\frac{\text{Σ}_{cyc}\left[x\left(y+z\right)\right]}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\frac{2\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz\right]}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=2+\frac{2xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(\le2+\frac{2xyz}{8xyz}=2+\frac{1}{4}=\frac{9}{4}\)

Đẳng thức xảy ra\(\Leftrightarrow x=y=z=\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
Ngọc Ánh Trương
5 tháng 10 2018 lúc 23:27

Vào câu trả lời tương tự đi

Bình luận (0)
Trung Kiên Nguyễn
Xem chi tiết
Phạm Dương Ngọc Nhi
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 2 2020 lúc 18:11

\(\frac{x^5}{y^4}+\frac{x^5}{y^4}+y+y+y\ge5\sqrt[5]{\frac{x^{10}y^3}{y^8}}=\frac{5x^2}{y}\)

Tương tự: \(\frac{2y^5}{z^4}+3z\ge\frac{5y^2}{z}\) ; \(\frac{2z^5}{x^4}+3x\ge\frac{5z^2}{x}\)

Cộng vế với vế:

\(2\left(\frac{x^5}{y^4}+\frac{y^5}{z^4}+\frac{z^5}{x^4}\right)+3\left(x+y+z\right)\ge5\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\right)\ge5\left(x+y+z\right)\)

\(\Rightarrow2\left(\frac{x^5}{y^4}+\frac{y^5}{z^4}+\frac{z^5}{x^4}\right)\ge2\left(x+y+z\right)\ge2\)

\(\Rightarrow\frac{x^5}{y^4}+\frac{y^5}{z^4}+\frac{z^5}{x^4}\ge1\)

Dấu "=" xay ra khi \(x=y=z=\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa